Параметрическое возбуждение колебаний - определение. Что такое Параметрическое возбуждение колебаний
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Параметрическое возбуждение колебаний - определение

Возбуждение электронным ударом; Ударное возбуждение
Найдено результатов: 88
Параметрическое возбуждение колебаний      

возбуждение колебаний, наступающее в колебательной системе (См. Колебательные системы) в результате периодических изменения величины какого-либо из "колебательных параметров" системы (т. е. параметров, от величины которых существенно зависят значения потенциальной и кинетической энергий и периоды собственных колебаний (См. Собственные колебания) системы). П. в. к. может происходить в любой колебательной системе, как в механической, так и в электрической, например в колебательном контуре, образованном конденсатором и катушкой самоиндукции, при периодическом изменении ёмкости конденсатора или индуктивности катушки (см. также Параметрическое возбуждение и усиление электрических колебаний).

П. в. к. наступает в случаях, когда отношение ω0/ω (угловой частоты ω0 одного из собственных колебаний системы к угловой частоте ω изменений параметра) оказывается близким к n/2, где n = 1,2,3,...; тогда в системе могут возбудиться колебания с частотой, близкой к ω0 и точно равной ω/2, либо ω, либо 3ω/2 и т.д. П. в. к. наступает легче всего, а возникшие колебания оказываются наиболее интенсивными, когда ω0/ω≈ 1/2.

Классический пример П. в. к.- возбуждение интенсивных поперечных колебаний в струне, прикрепленной одним концом к ножке камертона (рис. 1, а) путём периодического изменения её натяжения. Легче всего П. в. к. возникает, когда один из периодов собственных колебаний струны (её основного тона или какого-либо из гармоник) приблизительно вдвое больше периода колебаний камертона. При обычном же возбуждении вынужденных колебаний (См. Вынужденные колебания) струны (рис. 1, б) с периодом, равным периоду колебаний камертона, резонанс наступил бы всякий раз, когда период колебаний камертона совпадал бы с периодом одного из собственных колебаний струны. Т. о., явление П. в. к. в этом отношении сходно с Резонансом при обычном возбуждении вынужденных колебаний; поэтому П. в. к. часто называется параметрическим резонансом.

Происхождение П. в. к. можно пояснить на модели маятника, выполненного в виде массы т, подвешенной на нити, длину которой l можно менять (рис. 2, а). Т. к. период колебаний маятника зависит от длины подвеса, то, меняя последнюю с периодом, например, вдвое меньшим периода собственных колебаний маятника, возможно П. в. к. Сообщив маятнику небольшие собственные колебания, удлиняем нить каждый раз, когда маятник проходит через одно из крайних положений, и уменьшаем её, когда он проходит через среднее положение в том или другом направлении (рис. 2, б). Натяжение нити не только уравновешивает направленную вдоль неё составляющую силы тяжести mg cos α (где α- угол отклонения маятника от вертикали), но и сообщает телу центростремительное ускорение v2/l, поэтому натяжение нити F = mg cos α + mv2/2, т. е. имеет наименьшее значение, когда маятник проходит через каждое из крайних положений (где v = 0, а α ≠0). При уменьшении длины нити в среднем положении внешняя сила Ф совершает большую работу, чем та отрицательная работа, которая совершается при увеличении её в крайних положениях. В результате за каждый период колебаний внешняя сила совершает положительную работу, и если эта работа превосходит потери энергии колебаний в системе за период, то энергия колебаний маятника, а значит, и амплитуда этих колебаний будут возрастать. Поэтому начальные собственные колебания, которые были сообщены маятнику, могут иметь сколь угодно малую амплитуду; в частности, это могут быть те флуктуационные колебания, которые неизбежно происходят во всякой колебательной системе вследствие воздействия на неё различных случайных факторов и имеют сплошной спектр со всевозможными фазами гармонических составляющих. Следовательно, независимо от того, в какой фазе происходят периодические изменения длины подвеса, всегда найдутся такие малые собственные колебания маятника, для которых эти изменения происходят в нужной фазе, вследствие чего амплитуда именно этих собственных колебаний будет возрастать.

При П. в. к. состояние равновесия в результате периодического воздействия на какой-либо параметр становится неустойчивым и система начинает совершать нарастающие колебания около положения равновесия. Однако нарастание колебаний не происходит беспредельно, т. к., когда амплитуда и скорости колебаний достигают больших значений, колебательная система начинает вести себя как нелинейная система (См. Нелинейные системы) и нарастание колебаний прекращается.

Области, в которых состояние равновесия неустойчиво и происходит П. в. к., как уже указывалось, лежат вблизи значений ω0/ω = 1/2, 1, 3/2,... (рис. 3) и зависят от относительной амплитуды изменений параметра α. Чем больше эта амплитуда, тем шире область, т. е. тем при большем отличии ω0/ω от 1/2, 1 и т.д. всё ещё наблюдается П. в. к. Вне областей неустойчивости П. в. к. не наступает и колебания в системе отсутствуют (в отличие от "обычного" возбуждения вынужденных колебаний, когда и вдали от резонанса слабые вынужденные колебания всё же возникают). Вблизи значений ω0= 1/2, 1, 3/2,... П. в. к. наступает, как видно из рис. 3, при сколь угодно малых амплитудах изменений параметра. Это - следствие того, что мы пренебрегли потерями энергии, всегда существующими в реальной колебательной системе. Если учесть потери энергии, то области, в которых состояние равновесия неустойчиво (пунктир на рис. 3), уменьшаются. Как и следовало ожидать, при наличии потерь неустойчивость даже в отсутствие расстройки наступает только при достаточно большой амплитуде изменений параметра, когда вклад энергии от периодического изменения параметра превосходит потери. Т. о., вследствие потерь энергии, для П. в. к. всегда существует порог. В системах с большими потерями этот порог поднимается выше предела возможных изменений параметра сначала для более высоких отношений ω0, а затем и для ω0/ω= 1/2, т. е. явление П. в. к. вообще не может возникнуть.

Лит.: Горелик Г. С., Колебания и волны, 2 изд., М., 1959, гл. Ill, §9; Мандельштам Л. И., Полн. собр. трудов, т. 4, М., 1955 (Лекции по колебаниям, ч. 1, лекции 18-19).

С. М. Хайкин.

Рис. 1. а - параметрическое возбуждение колебаний струны; б - вынужденное колебание струны.

Рис. 2. а - устройство маятника с переменной длиной подвеса; б - схема движения тела маятника за один период.

Рис. 3. Области, в которых возможно параметрическое возбуждение колебаний.

ПАРАМЕТРИЧЕСКОЕ ВОЗБУЖДЕНИЕ КОЛЕБАНИЙ      
возбуждение колебаний в системе в результате периодического изменения величины какого-либо из ее энергоемких параметров, напр. емкости или индуктивности, в случае электромагнитных колебаний в колебательном контуре. Параметрическое возбуждение колебаний наступает только при определенных соотношениях между частотой собственных колебаний ?0 системы и частотой ?п изменения параметра. Наиболее благоприятно условие: ?п = 2?0.
Столкновительное возбуждение         
Столкнови́тельное возбужде́ние — один из процессов, в результате которого в спектре эмиссионных туманностей — планетарных туманностей или областей H II — возникают линии испускания.
Половое возбуждение         
ИЗМЕНЕНИЕ В ОРГАНИЗМЕ, ПРОИСХОДЯЩЕЕ ПОД ВОЗДЕЙСТВИЕМ СЕКСУАЛЬНЫХ СТИМУЛОВ
Сексуальное возбуждение; Sexual arousal; Сексуальная стимуляция
Половое возбуждение — изменения в организме человека или животного, происходящие под воздействием сексуальных стимулов. Это начальная фаза, первая из четырёх фаз в цикле полового ответа человека.
Квазичастица         
СОВМЕСТНОЕ ПОВЕДЕНИЕ МНОЖЕСТВА ЧАСТИЦ В СЛОЖНОЙ НА МИКРОСКОПИЧЕСКОМ УРОВНЕ СИСТЕМЕ, ВЫГЛЯДЯЩЕЕ КАК ОДНА «ЧАСТИЦА», ДВИЖУЩАЯСЯ В ВАКУУМЕ
Квазичастицы; Элементарное возбуждение
Квазичасти́ца (от  «наподобие», «нечто вроде») — понятие в квантовой механике, введение которого позволяет существенно упростить описание сложных квантовых систем со взаимодействием, таких как твёрдые тела и квантовые жидкости.
Квазичастицы         
СОВМЕСТНОЕ ПОВЕДЕНИЕ МНОЖЕСТВА ЧАСТИЦ В СЛОЖНОЙ НА МИКРОСКОПИЧЕСКОМ УРОВНЕ СИСТЕМЕ, ВЫГЛЯДЯЩЕЕ КАК ОДНА «ЧАСТИЦА», ДВИЖУЩАЯСЯ В ВАКУУМЕ
Квазичастицы; Элементарное возбуждение
(от квази (См. Квази...)... и частицы)

одно из фундаментальных понятий теории конденсированного состояния вещества, в частности теории твёрдого тела. Теоретическое описание и объяснение свойств конденсированных сред (твёрдых тел и жидкостей), исходящее из свойств составляющих их частиц (атомов, молекул), представляет большие трудности, во-первых, потому, что число частиц огромно (Квазичастицы 1022 частиц в 1 см3), и, во-вторых, потому, что они сильно взаимодействуют между собой. Из-за взаимодействия частиц полная энергия такой системы, определяющая многие её свойства, не является суммой энергий отдельных частиц, как в случае идеального газа. Частицы конденсированной среды подчиняются законам квантовой механики; поэтому свойства совокупности частиц, составляющих твёрдое тело (или жидкость), могут быть поняты лишь на основе квантовых представлений. Развитие квантовой теории конденсированных сред привело к созданию специальных физических понятий, в частности к концепции К. - элементарных возбуждений всей совокупности взаимодействующих частиц. Особенно плодотворные результаты концепция К. дала в теории кристаллов и жидкого гелия (См. Гелий).

Свойства квазичастиц. Оказалось, что энергию E0 кристалла (или жидкого гелия) можно приближённо считать состоящей из двух частей: энергии основного (невозбуждённого) состояния E0 (наименьшая энергия, соответствующая состоянию системы при абсолютном нуле температуры) и суммы энергий Eλ элементарных (несводимых к более простым) движений (возбуждений):

E = E0 +

Индекс λ характеризует тип элементарного возбуждения, nλ - целые числа, показывающие число элементарных возбуждений типа λ.

Т. о., энергию возбуждённого состояния кристалла (гелия) оказалось возможным записать так же, как и энергию идеального газа, в виде суммы энергий. Однако в случае газа суммируется энергия его частиц (атомов и молекул), а в случае кристалла суммируются энергии элементарных возбуждений всей совокупности атомов (отсюда термин "К."). В случае газа, состоящего из свободных частиц, индекс λ обозначает импульс р частицы, Eλ - её энергию Eλ = p2/2m, m - масса частицы), nλ - число частиц, обладающих импульсом р. Скорость υ = p/m.

Элементарное возбуждение в кристалле также характеризуют вектором р, свойства которого похожи на импульс, его называют квазиимпульсом. Энергия Eλ элементарного возбуждения зависит от квазиимпульса, но эта зависимость Eλ(p) носит не такой простой характер, как в случае свободной частицы. Скорость распространения элементарного возбуждения также зависит от квазиимпульса и от вида функции Eλ(p). В случае К. индекс λ включает в себя обозначение типа элементарного возбуждения, поскольку в конденсированной среде возможны элементарные возбуждения, разные по своей природе (аналог - газ, содержащий частицы различного сорта).

Введение для элементарных возбуждений термина "К." вызвано не только внешним сходством в описании энергии возбуждённого состояния кристалла (или жидкого гелия) и идеального газа, но и глубокой аналогией между свойствами свободной (квантовомеханической) частицы и элементарным возбуждением совокупности взаимодействующих частиц, основанной на корпускулярно-волновом дуализме (См. Корпускулярно-волновой дуализм). Состояние свободной частицы в квантовой механике описывается монохроматической волной (см. Волны де Бройля), частота которой , а длина волны p (E и ħ - энергия и импульс свободной частицы, ħ - Планка постоянная). В кристалле возбуждение одной из частиц (например, поглощение одним из атомов Фотона), приводящее из-за взаимодействия (связи) атомов к возбуждению соседних частиц, не остаётся локализованным, а передаётся соседям и распространяется в виде волны возбуждений. Этой волне ставится в соответствие К. с квазиимпульсом и энергией E = hω(k) (k - волновой вектор, длина волны λ = 2π/k).

Зависимость частоты от волнового вектора к позволяет установить зависимость энергии К. от квазиимпульса. Эта зависимость Eλ = E (p) называют законом дисперсии, является основной динамической характеристикой К., в частности определяет ее скорость . Знание закона дисперсии К. позволяет исследовать движение К. во внешних полях, К., в отличие от обычной частицы, не характеризуется определённой массой, Однако, подчёркивая сходство К. и частицы, иногда удобно вводить величину, имеющую размерность массы. Её называют эффективной массой mэф. (как правило, эффективная масса зависит от квазиимпульса и от вида закона дисперсии).

Всё сказанное позволяет рассматривать возбуждённую конденсированную среду как газ К. Сходство между газом частиц и газом К. проявляется также в том, что для описания свойств газа К. могут быть использованы понятия и методы кинетической теории газов, в частности говорят о столкновениях К. (при которых имеют место специфические законы сохранения энергии и квазиимпульса), длине свободного пробега, времени свободного пробега и т.п. Для описания газа К. может быть использовано кинетическое уравнение Больцмана. Одно из важных отличительных свойств газа К. (по сравнению с газом обычных частиц) состоит в том, что К. могут появляться и исчезать, т. е. число их не сохраняется. Число К. зависит от температуры. При Т = 0 К квазичастицы отсутствуют. Для газа К. как квантовой системы можно определить энергетический спектр (совокупность энергетических уровней) и рассматривать его как энергетический спектр кристалла или жидкого гелия. Разнообразие типов К. велико, т.к. их характер зависит от атомной структуры среды и взаимодействия между частицами. В одной и той же среде может существовать несколько типов К.

К., как и обычные частицы, могут иметь собственный механический момент - Спин. В соответствии с его величиной (выражаемой целым или полуцелым числом h) К. можно разделить на Бозоны и Фермионы. Бозоны рождаются и исчезают поодиночке, фермионы рождаются и исчезают парами.

Для К.-фермионов распределение по энергетическим уровням определяется функцией распределения Ферми, для К.-бозонов - функцией распределения Бозе. В энергетическом спектре кристалла (или жидкого гелия), который является совокупностью энергетических спектров всех возможных в них типов К., можно выделить фермиевскую и бозевскую "ветви". В некоторых случаях газ К. может вести себя и как газ, подчиняющийся Больцмана статистике (См. Больцмана статистика) (например, газ электронов проводимости и дырок в невырожденном полупроводнике (См. Полупроводники), см. ниже).

Теоретическое объяснение наблюдаемых макроскопических свойств кристаллов (или жидкого гелия), основанное на концепции К., требует знания закона дисперсии К., а также вероятности столкновений К. друг с другом и с дефектами в кристаллах (См. Дефекты в кристаллах). Получение численных значений этих характеристик возможно только путём применения вычислительной техники. Кроме того, существенное развитие получил полуэмпирический подход: количественные характеристики К. определяются из сравнения теории с экспериментом, а затем служат для расчёта характеристик кристаллов (или жидкого гелия).

Для определения характеристик К. используются рассеяние нейтронов, рассеяние и поглощение света, Ферромагнитный резонанс и Антиферромагнитный резонанс, ферроакустический резонанс, изучаются свойства металлов и полупроводников в сильных магнитных полях, в частности Циклотронный резонанс, Гальваномагнитные явления и т.д.

Концепция К. применима только при сравнительно низких температурах (вблизи основного состояния), когда свойства газа К. близки к свойствам идеального газа (См. Идеальный газ). С ростом числа К. возрастает вероятность их столкновений, уменьшается время свободного пробега К. и, согласно неопределённостей соотношению (См. Неопределённостей соотношение), увеличивается неопределённость энергии К. Само понятие К. теряет смысл. Поэтому ясно, что с помощью К. нельзя описать все движения атомных частиц в конденсированных средах. Например, К. непригодны для описания самодиффузии (случайного блуждания атомов по кристаллу).

Однако и при низких температурах с помощью К. нельзя описать все возможные движения в конденсированной среде. Хотя, как правило, в элементарном возбуждении принимают участие все атомы тела, оно микроскопично: энергия и импульс каждой К. - атомного масштаба, каждая К. движется независимо от других. Атомы и электроны в конденсированной среде могут принимать участие в движении совершенно др. природы - макроскопическом по своей сути (гидродинамическом) и в то же время не теряющем своих квантовых свойств. Примеры таких движении: сверхтекучее движение в гелии-II (см. Сверхтекучесть) и электрический ток в сверхпроводниках (см. Сверхпроводимость). Их отличительная черта - строгая согласованность (когерентность) движения отдельных частиц.

Представление о К. получило применение не только в теории твёрдого тела и жидкого гелия, но и в др. областях физики: в теории атомного ядра (см. Ядерные модели), в теории плазмы (См. Плазма), в астрофизике и т.п.

Фононы. В кристалле атомы совершают малые колебания, которые в виде волн распространяются по кристаллу (см. Колебания кристаллической решётки). При низких температурах Т главную роль играют длинноволновые акустические колебания - обычные звуковые волны: они обладают наименьшей энергией. К., соответствующие волнам колебаний атомов, называют Фононами. Фононы - Бозоны; их число при низких температурах растет пропорционально T3. Это обстоятельство, связанное с линейной зависимостью энергии фонона ЕФ от его квазиимпульса р при достаточно малых квазиимпульсах ЕФ = sp, где s - скорость звука), объясняет тот факт, что Теплоёмкость кристаллов (неметаллических) при низких температурах пропорциональна T3.

Фононы в сверхтекучем гелии. Основное состояние гелия напоминает предельно вырожденный Бозе-газ. Как во всякой жидкости, в гелии могут распространяться звуковые волны (волны колебаний плотности). Звуковые волны - единственный тип микроскопического движения возможного в гелии вблизи основного состояния. Так как в звуковой волне частота ω пропорциональна волновому вектору k: ω = sk (s- скорость звука), то соответствующие К. (фононы) имеют закон дисперсии E = sp. По мере увеличения импульса кривая E = E (p) отклоняется от линейного закона. Фононы гелия также подчиняются статистике Бозе. Представление об энергетическом спектре гелия как о фононном спектре не только описывает его термодинамические свойства (например, зависимость теплоёмкости гелия от температуры), но и объясняет явление сверхтекучести.

Магноны. В ферро- и антиферромагнетиках при Т = 0 К спины атомов строго упорядочены. Состояние возбуждения магнитной системы связано с отклонением спина от "правильного" положения. Это отклонение не локализуется на определенном атоме, а переносится от атома к атому. Элементарное возбуждение магнитной системы представляет собой волну поворотов спина (спиновая волна), а соответствующая ей К. называют магноном. Магноны - бозоны. Энергия магнона квадратично зависит от квазиимпульса (в случае малых квазиимпульсов). Это находит отражение в тепловых и магнитных свойствах ферро- и Антиферромагнетиков (например, при низких температурах отклонение магнитногомомента ферромагнетика (См. Ферромагнетики) от насыщения Квазичастицы Т3/2). Высокочастотные свойства ферро- и антиферромагнетиков описываются в терминах "рождения" магнонов.

Экситон Френкеля представляет собой элементарное возбуждение электронной системы отдельного атома или молекулы, которое распространяется по кристаллу в виде волны. Экситон, как правило, имеет весьма значительную (по атомным масштабам) энергию Квазичастицы нескольких эв. Поэтому вклад экситонов в тепловые свойства твёрдых тел мал. Экситоны проявляют себя в оптических свойствах кристаллов. Обычно среднее число экситонов очень мало. Поэтому их можно описывать классической статистикой Больцмана.

Электроны проводимости и дырки. В твёрдых диэлектриках (См. Диэлектрики) и полупроводниках (См. Полупроводники) наряду с экситонами существуют элементарные возбуждения, обусловленные процессами, аналогичными ионизации атома. В результате такой "ионизации" возникают две независимо распространяющиеся К.: Электрон проводимости и Дырка (недостаток электрона в атоме). Дырка ведёт себя как положительно заряженная частица, хотя её движение представляет собой волну электронной перезарядки, а не движение положительного иона. Электроны проводимости и дырки - фермионы. Они являются носителями электрического тока в твёрдом теле. Полупроводники, у которых энергия "ионизации" мала, всегда содержат заметное количество электронов проводимости и дырок. Проводимость полупроводников падает с понижением температуры, т.к. число электронов и дырок при этом уменьшается.

Электрон и дырка, притягиваясь друг к другу, могут образовать экситон Мотта (квазиатом), который проявляет себя в оптических спектрах кристаллов водородоподобными линиями поглощения (см. Экситон).

Поляроны. Взаимодействие электрона с колебаниями решётки приводит к её поляризации вблизи электрона. Иногда взаимодействие электрона с кристаллической решёткой настолько сильно, что движение электрона по кристаллу сопровождается волной поляризации. Соответствующая К. называется Поляроном.

Электроны проводимости металла, взаимодействующие друг с другом и с полем ионов кристаллической решётки, эквивалентны газу К. со сложным законом дисперсии. Заряд каждой К. равен заряду свободного электрона, а спин равен 1/2. Их динамические свойства, обусловленные законом дисперсии, существенно отличаются от свойств обычных свободных электронов. Электроны проводимости - фермионы. В пространстве квазиимпульсов при Т = 0 К они заполняют область, ограниченную Ферми поверхностью. Возбуждение электронов проводимости означает появление пары: электрона "над" поверхностью Ферми и свободного места (дырки) "под" поверхностью. Электронный газ сильно вырожден не только при низких, но и при комнатных температурах (см. Вырожденный газ). Это обстоятельство определяет температурную зависимость большинства характеристик металла (в частности, линейную зависимость теплоёмкости от температуры при Т → 0).

Лит.: Ландау Л. Д., Лифшиц Е. М., Статистическая физика, 2 изд., М., 1964; Займан Дж., Принципы теории твёрдого тела, пер. с англ., М., 1966; Лифшиц И. М., Квазичастицы в современной физике, в сборнике: В глубь атома, М., 1964; Рейф Ф., Сверхтекучесть и "Квазичастицы", в сборнике: Квантовая макрофизика, пер. с англ., М., 1967.

М. И. Каганов.

КВАЗИЧАСТИЦЫ         
СОВМЕСТНОЕ ПОВЕДЕНИЕ МНОЖЕСТВА ЧАСТИЦ В СЛОЖНОЙ НА МИКРОСКОПИЧЕСКОМ УРОВНЕ СИСТЕМЕ, ВЫГЛЯДЯЩЕЕ КАК ОДНА «ЧАСТИЦА», ДВИЖУЩАЯСЯ В ВАКУУМЕ
Квазичастицы; Элементарное возбуждение
понятие квантовой теории систем многих взаимодействующих частиц (кристаллов, жидкостей, плазмы, ядерной материи и т. д.). Квазичастицы представляют собой кванты элементарных возбуждений системы. Подобно обычным частицам, квазичастицы могут быть охарактеризованы энергией, импульсом (квазиимпульсом), спином и т. д. Приближенно совокупность взаимодействующих между собой частиц оказывается аналогичной по свойствам идеальному газу квазичастиц. Существуют квазичастицы-бозоны (кванты звуковых волн - фононы, спиновых волн - магноны и др.) и квазичастицы-фермионы (электроны проводимости и дырки).
Параметрическое представление         
  • Пример параметрической кривой.
Параметрическое представление — используемая в математическом анализе разновидность представления переменных, когда их зависимость выражается через дополнительную величину — параметр.
Возбуждение (физика)         
В ФИЗИКЕ — ПЕРЕХОД СИСТЕМЫ ИЗ ОСНОВНОГО ЭНЕРГЕТИЧЕСКОГО СОСТОЯНИЯ В СОСТОЯНИЕ С БОЛЬШЕЙ ЭНЕРГИЕЙ
Возбуждённое состояние
Возбуждение в физике — переход системы из основного энергетического состояния в состояние с большей энергией.
Параметрическое представление         
  • Пример параметрической кривой.

функции, выражение функциональной зависимости между несколькими переменными посредством вспомогательных переменных Параметров. В случае двух переменных х и у зависимость между ними F (х, у) = 0 может быть геометрически истолкована как уравнение некоторой плоской кривой. Любую величину t, определяющую положение точки (х, у) на этой кривой (например, длину дуги, отсчитываемой со знаком + или - от некоторой точки кривой, принятой за начало отсчёта, или момент времени в некотором заданном движении точки, описывающей кривую), можно принять за параметр, в функции которого выразятся х и у:

x = φ(t), у = ψ(t). (*)

Последние функции и дадут П. п. функциональной зависимости между х и у, уравнения (*) называют параметрическими уравнениями соответствующей кривой. Так, для случая зависимости x2 + y2 = 1 имеем П. п. х= cos t, у = sin t (0 ≤ t < 2π) (параметрические уравнения окружности); для случая зависимости х22 = 1 имеем П. п. ; (t ≠ 0) или также х = cosec t, y=ctg t (- π< t < π, t ≠ 0) (параметрические уравнения гиперболы). Если параметр t можно выбрать так, что функции (*) рациональны, то кривую называют уникурсальной (см. Уникурсальная кривая); такой является, например, гипербола. Особенно важно П. п. пространственных кривых, т. е. задание их уравнениями вида: х = φ(t), у = ψ (t), z = χ (t). Так, прямая в пространстве допускает П. п. х = а + mt; у = b + nt; z = с + pt, Винтовая линия - П. п. х = a cos t; у = a sin t; z = ct.

Для случая трёх переменных х, у и z, связанных зависимостью F (x, y, z) = 0 (одну из них, например z, можно рассматривать как неявную функцию двух других), геометрическим образом служит поверхность. Чтобы определить положение точки на ней, нужны два параметра u и υ (например, широта и долгота на поверхности шара), так что П. п. имеет вид: х = φ(u, υ), у = ψ (u, υ); z = χ (u, υ). Например, для зависимости x2+ y2= (z2+1)2 имеем П. п. х = (u2-1) cos υ; у = (u2 + 1) sinυ; z = u. Важнейшими преимуществами П. п. являются: 1) то, что они дают возможность изучать Неявные функции и в тех случаях, когда переход к их явному заданию без посредства параметров затруднителен; 2) то, что здесь удаётся выражать многозначные функции посредством однозначных. Вопросы П. п. изучены особенно хорошо для аналитических функций. П. п. аналитических функций посредством однозначных аналитических функций составляет предмет теории униформизации (См. Униформизация).

Википедия

Столкновительное возбуждение

Столкнови́тельное возбужде́ние — один из процессов, в результате которого в спектре эмиссионных туманностей — планетарных туманностей или областей H II — возникают линии испускания.

В этих астрономических объектах бо́льшая часть атомов ионизируются фотонами, исходящими от горячих звёзд, находящихся внутри туманности. От атомов при этом отделяются электроны (называемые фотоэлектронами), которые могут сталкиваться с другими атомами или ионами, приводя их в возбуждённое состояние. Когда же возбуждённые атомы возвращаются в основное состояние, они излучают фотон.

Такие линии могут наблюдаться только в газах очень низкой плотности (обычно меньше нескольких тысяч частиц на см³). При более высоких плотностях происходит обратный процесс столкновительного девозбуждения (тушения), и атомы не успевают испускать фотоны. Даже самый разреженный газ, полученный в земных условиях, слишком плотен, чтобы в его спектре появились эти линии (поэтому позже они получили название запрещённых линий). Когда Уильям Хаггинс впервые изучил спектр туманности Кошачий Глаз и обнаружил линии, не принадлежащие ни одному известному элементу, он приписал их новому элементу — небулию. В конце концов оказалось, что эти линии принадлежат дважды ионизированному кислороду, находящемуся в сильно разреженном состоянии.

Линии, вызванные столкновительным возбуждением, имеют важное значение для исследований газовых туманностей, так как с их помощью можно измерить плотность и температуру газа.

Процесс столкновительного возбуждения сходен с катодолюминесценцией. И в том, и в другом процессе атомы возбуждаются из-за столкновения с электронами, однако катодолюминесценция вызывается искусственно (прямым облучением электронами, а не светом), она не является спонтанным процессом, может наблюдаться в (относительно) плотных газах.